Definitions and key facts for section 4.4

Fact: The unique representation theorem

Let $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ be a basis for a vector space V. Then for each \mathbf{x} in V there exists a *unique* set of scalars c_1, \ldots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_n \mathbf{b}_n.$$

We call these scalars c_1, \ldots, c_n the coordinates of x relative to the basis \mathcal{B} (or more simply, the \mathcal{B} -coordinates of x).

The vector in \mathbb{R}^n consisting of the \mathcal{B} -coordinates of \mathbf{x}

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

is the coordinate vector of x relative to \mathcal{B} or the \mathcal{B} -coordinate vector of x.

For a basis $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ of \mathbb{R}^n , we call the matrix

$$P_{\mathcal{B}} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_n \end{bmatrix}$$

the change-of-coordinates matrix from \mathcal{B} to the standard basis in \mathbb{R}^n . Note for any vector \mathbf{x} in \mathbb{R}^n , we have

$$P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} = \mathbf{x} \text{ and } [\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}\mathbf{x}.$$

For a basis $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ of a vector space V, the **coordinate mapping** $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is a one-to-one and onto linear transformation from V to \mathbb{R}^n .

We call such a map an *isomorphism* and say that V and \mathbb{R}^n are *isomorphic* vector spaces.