Definitions and key facts for section 4.4

Fact: The unique representation theorem
Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for a vector space V. Then for each \mathbf{x} in V there exists a unique set of scalars c_{1}, \ldots, c_{n} such that

$$
\mathbf{x}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+\cdots+c_{n} \mathbf{b}_{n}
$$

We call these scalars c_{1}, \ldots, c_{n} the coordinates of \mathbf{x} relative to the basis \mathcal{B} (or more simply, the \mathcal{B}-coordinates of \mathbf{x}).
The vector in \mathbb{R}^{n} consisting of the \mathcal{B}-coordinates of \mathbf{x}

$$
[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

is the coordinate vector of \mathbf{x} relative to \mathcal{B} or the \mathcal{B}-coordinate vector of \mathbf{x}.

For a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of \mathbb{R}^{n}, we call the matrix

$$
P_{\mathcal{B}}=\left[\begin{array}{lll}
\mathbf{b}_{1} & \cdots & \mathbf{b}_{n}
\end{array}\right]
$$

the change-of-coordinates matrix from \mathcal{B} to the standard basis in \mathbb{R}^{n}.
Note for any vector \mathbf{x} in \mathbb{R}^{n}, we have

$$
P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}=\mathbf{x} \text { and }[\mathbf{x}]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} \mathbf{x}
$$

For a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of a vector space V, the coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is a one-to-one and onto linear transformation from V to \mathbb{R}^{n}.
We call such a map an isomorphism and say that V and \mathbb{R}^{n} are isomorphic vector spaces.

